Publications

Research paper

Methods paper

Review

Commentary

Popular science

Research paper

Details Matter: noise and model structure set the relationship between cell size and cell cycle timing

Felix Barber; Po-Yi Ho; Andrew Murray; Ariel Amir

Accepted Frontiers in Cell and Developmental Biology (2017)

Exploring Genetic Suppression Interactions on a Global Scale

Jolanda van Leeuwen; Carles Pons; Joseph C Mellor; Takafumi N Yamaguchi; Helena Friesen; John H Koschwanez; Mojca Mattiazzi Ušaj; Maria Pechlaner; Mehmet Takar; Matej Ušaj; Benjamin VanderSluis; Kerry Andrusiak; Pritpal Bansal; Anastasia Baryshnikova; Claire E Boone; Jessica Cao; Atina Cote; Marinella Gebbia; Gene Horecka; Ira Horecka; Elena Kuzmin; Nicole Legro; Wendy Liang; Natascha van Lieshout; Margaret McNee; Bryan-Joseph San Luis; Fatemeh Shaeri; Ermira Shuteriqi; Son Sun; Lu Yang; Ji-Young Youn; Michael Yuen; Michael Costanzo; Anne-Claude Gingras; Patrick Aloy; Chris Oostenbrink; Andrew W Murray; Todd R Graham; Chad L Myers; Brenda J Andrews; Frederick P Roth; Charles Boone

Science 354 (6312), pp. aag0839 (2016)

pdf PubMed

Multicellularity Makes Somatic Differentiation Evolutionarily Stable

Mary E Wahl; Andrew W Murray

PNAS 113 (30), pp. 8362–8367 (2016)

pdf PubMed

Spatially Constrained Growth Enhances Conversional Meltdown

Maxim O Lavrentovich; Mary E Wahl; David R Nelson; Andrew W Murray

Biophysical Journal 110 (12), pp. 2800-2808 (2016)

pdf PubMed

A Predictive Model for Yeast Cell Polarization in Pheromone Gradients

Nicolas Muller; Matthieu Piel; Vincent Calvez; Raphaël Voituriez; Joana Gonçalves-Sá; Chin-Lin Guo; Xingyu Jiang; Andrew W Murray; Nicolas Meunier

PLoS Computational Biology 12 (4), pp. e1004795 (2016)

pdf PubMed

How Obstacles Perturb Population Fronts and Alter Their Genetic Structure

Wolfram Möbius; Andrew W Murray; David R Nelson

PLoS Computational Biology 11 (12), pp. e1004615 (2015)

pdf PubMed

Evolutionary adaptation after crippling cell polarization follows reproducible trajectories

Liedewij Laan; John H Koschwanez; Andrew W Murray

eLife 10 (4), pp. e09638 (2015)

pdf PubMed

Evolving a 24-hour oscillator in budding yeast

Gregg A Wildenberg; Andrew W Murray

eLife 10(3), pp. e04875 (2014)

pdf PubMed

Conservation Weighting Functions Enable Covariance Analyses to Detect Functionally Important Amino Acids

Lucy J Colwell; Michael P Brenner; Andrew W Murray

PLoS ONE 9(11), pp. e107723 (2014)

pdf PubMed

Chromosomal attachments set length and microtubule number in the S. cerevisiae mitotic spindle

Natalie J Nannas; Eileen T O'Toole; Mark Winey; Andrew W Murray

Molecular Biology of the Cell 25(25), pp. 4034-4048 (2014)

pdf PubMed

A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

Lori B Huberman; Andrew W Murray

PLoS ONE 9(10), pp. e109780 (2014)

pdf PubMed

Tethering Sister Centromeres to Each Other Suggests the Spindle Checkpoint Detects Stretch within the Kinetochore

Natalie J Nannas; Andrew W Murray

PLoS Genetics 10, pp. e1004492 (2014)

pdf PubMed

A Model for the Evolution of Biological Specificity: a Cross-Reacting DNA-Binding Protein Causes Plasmid Incompatibility

Edel M Hyland; Edward WJ Wallace; Andrew W Murray

Journal of Bacteriology 196, pp. 3002-3011 (2014)

pdf PubMed

Niche Engineering Demonstrates a Latent Capacity for Fungal-Algal Mutualism

Erik FY Hom; Andrew W Murray

Science 345, pp. 94-98 (2014)

pdf PubMed

Growing yeast into cylindrical colonies

Clément Vulin; Jean-Marc Di Meglio; Ariel B Lindner; Adrian Daerr; Andrew Murray; Pascal Hersen

Biophysical Journal 106, pp. 2214-2221 (2014)

pdf PubMed

Genetic drift opposes mutualism during spatial population expansion

Melanie JI Müller; Beverly I Neugeboren; David R Nelson; Andrew W Murray

Proceedings of the National Academy of Sciences of the United States of America (PNAS) 111, pp. 1037-1042 (2014)

pdf PubMed

Genetically engineered transvestites reveal novel mating genes in budding yeast

Lori B Huberman; Andrew W Murray

Genetics 195, pp. 1277-1290 (2013)

pdf PubMed

Nutrient shielding in clusters of cells

Maxim O Lavrentovich; John H Koschwanez; David R Nelson

Physical review. E, Statistical, nonlinear, and soft matter physics 87(6):062703 (2013)

pdf PubMed

Improved use of a public good selects for the evolution of undifferentiated multicellularity

John H Koschwanez; Kevin R Foster; Andrew W Murray

eLife 2, pp. e00367 (2013)

pdf PubMed

Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis

Derek T C Lau; Andrew W Murray

Current Biology 22, pp. 180-190 (2012)

PubMed

Selective sweeps in growing microbial colonies

Kirill S Korolev; Melanie J I Müller; Nilay Karahan; Andrew W Murray; Oskar Hallatschek; David R Nelson

Physical Biology 9, pp. 026008 (2012)

pdf PubMed

Asymmetry in Sexual Pheromones Is Not Required for Ascomycete Mating

Joana Gonçalves-Sá; Andrew Murray

Current Biology 21, pp. 1337-46 (2011)

PubMed

Sucrose Utilization in Budding Yeast as a Model for the Origin of Undifferentiated Multicellularity

John H Koschwanez; Kevin R Foster; Andrew W Murray

PLoS Biology 9, pp. e1001122 (2011)

pdf PubMed

Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis

Erin L Barnhart; Russell K Dorer; Andrew W Murray; Scott C Schuyler

Molecular Biology of the Cell 22, pp. 2448-57 (2011)

pdf PubMed

Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing

Gregory I Lang; Andrew W Murray

Genome Biology and Evolution 3, pp. 799-811 (2011)

pdf PubMed

Seeing mutations in living cells

Marina Elez; Andrew W Murray; Li-Jun Bi; Xian-En Zhang; Ivan Matic; Miroslav Radman

Current Biology 20, pp. 1432-7 (2010)

PubMed

Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts

Chris A Brown; Andrew W Murray; Kevin J Verstrepen

Current Biology 20, pp. 895-903 (2010)

PubMed

Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast

Soni Lacefield; Derek T C Lau; Andrew W Murray

Nature Cell Biology 11, pp. 1116-1120 (2009)

pdf PubMed

Coding-sequence determinants of gene expression in Escherichia coli

Grzegorz Kudla; Andrew W Murray; David Tollervey; Joshua B Plotkin

Science 324, pp. 255-8 (2009)

pdf PubMed

The cost of gene expression underlies a fitness trade-off in yeast

Gregory I Lang; Andrew W Murray; David Botstein

Proceedings of the National Academy of Sciences of the United States of America 106, pp. 5755-60 (2009)

pdf PubMed

Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae

Gregory I Lang; Andrew W Murray

Genetics 178, pp. 67-82 (2008)

pdf PubMed

Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle

Vahan B Indjeian; Andrew W Murray

Current Biology 17, pp. 1837-46 (2007)

PubMed

The spindle checkpoint rescues the meiotic segregation of chromosomes whose crossovers are far from the centromere

Soni Lacefield; Andrew W Murray

Nature Genetics 39, pp. 1273-7 (2007)

pdf PubMed

Positive-Feedback Loops as a Flexible Biological Module

Nicholas T Ingolia; Andrew W Murray

Current Biology 17, pp. 668-77 (2007)

PubMed

The Speed of Evolution and Maintenance of Variation in Asexual Populations

Michael M Desai; Daniel S Fisher; Andrew W Murray

Current Biology 17, pp. 385-94 (2007)

PubMed

Ploidy controls the success of mutators and nature of mutations during budding yeast evolution

Dawn A Thompson; Michael M Desai; Andrew W Murray

Current Biology 16, pp. 1581-90 (2006)

PubMed

Anaphase inactivation of the spindle checkpoint

William J Palframan; Janet B Meehl; Sue L Jaspersen; Mark Winey; Andrew W Murray

Science 313, pp. 680-4 (2006)

pdf PubMed

High-Resolution Mutation Mapping Reveals Parallel Experimental Evolution in Yeast

Ayellet V Segre; Andrew W Murray; Jun-Yi Leu

PLoS Biology 4, pp. e256 (2006)

pdf PubMed

Experimental evolution of mating discrimination in budding yeast

Jun-Yi Leu; Andrew W Murray

Current Biology 16, pp. 280-6 (2006)

PubMed

A small-molecule inhibitor of Mps1 blocks the spindle-checkpoint response to a lack of tension on mitotic chromosomes

Russell K Dorer; Sheng Zhong; John A Tallarico; Wing Hung Wong; Timothy J Mitchison; Andrew W Murray

Current Biology 15, pp. 1070-6 (2005)

PubMed

Identification of xenopus CENP-A and an associated centromeric DNA repeat

Nathaniel S Edwards; Andrew W Murray

Molecular Biology of the Cell 16, pp. 1800-10 (2005)

pdf PubMed

The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes

Vahan B Indjeian; Bodo M Stern; Andrew W Murray

Science 307, pp. 130-3 (2005)

pdf PubMed

Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes

Marion A Shonn; Amara L Murray; Andrew W Murray

Current Biology 13, pp. 1979-84 (2003)

PubMed

Spo13 protects meiotic cohesin at centromeres in meiosis I

Marion A Shonn; Robert McCarroll; Andrew W Murray

Genes & Development 16, pp. 1659-71 (2002)

pdf PubMed

Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior

Needhi Bhalla; Sue Biggins; Andrew W Murray

Molecular Biology of the Cell 13, pp. 632-45 (2002)

pdf PubMed

The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint

S Biggins; A W Murray

Genes & Development 15, pp. 3118-29 (2001)

pdf PubMed

Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae

S Biggins; N Bhalla; A Chang; D L Smith; A W Murray

Genetics 159, pp. 453-70 (2001)

pdf PubMed

Lack of tension at kinetochores activates the spindle checkpoint in budding yeast

B M Stern; A W Murray

Current Biology 11, pp. 1462-7 (2001)

PubMed

Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells

B J Howell; D B Hoffman; G Fang; A W Murray; E D Salmon

The Journal of Cell Biology 150, pp. 1233-50 (2000)

pdf PubMed

The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement

H Funabiki; A W Murray

Cell 102, pp. 411-24 (2000)

PubMed

Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis

M A Shonn; R McCarroll; A W Murray

Science 289, pp. 300-3 (2000)

pdf PubMed

Cdc28 activates exit from mitosis in budding yeast

A D Rudner; K G Hardwick; A W Murray

The Journal of Cell Biology 149, pp. 1361-76 (2000)

pdf PubMed

Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex

A D Rudner; A W Murray

The Journal of Cell Biology 149, pp. 1377-90 (2000)

pdf PubMed

MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p

K G Hardwick; R C Johnston; D L Smith; A W Murray

The Journal of Cell Biology 148, pp. 871-82 (2000)

pdf PubMed

The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins

R H Chen; D M Brady; D Smith; A W Murray; K G Hardwick

Molecular Biology of the Cell 10, pp. 2607-18 (1999)

pdf PubMed

Genetic selection of peptide inhibitors of biological pathways

T C Norman; D L Smith; P K Sorger; B L Drees; S M O'Rourke; T R Hughes; C J Roberts; S H Friend; S Fields; A W Murray

Science 285, pp. 591-5 (1999)

pdf PubMed

Mad2 binding by phosphorylated kinetochores links error detection and checkpoint action in mitosis

J C Waters; R H Chen; A W Murray; G J Gorbsky; E D Salmon; R B Nicklas

Current Biology 9, pp. 649-52 (1999)

PubMed

Lesions in many different spindle components activate the spindle checkpoint in the budding yeast Saccharomyces cerevisiae

K G Hardwick; R Li; C Mistrot; R H Chen; P Dann; A Rudner; A W Murray

Genetics 152, pp. 509-18 (1999)

pdf PubMed

The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast

S Biggins; F F Severin; N Bhalla; I Sassoon; A A Hyman; A W Murray

Genes & Development 13, pp. 532-44 (1999)

pdf PubMed

Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast

A F Straight; J W Sedat; A W Murray

The Journal of Cell Biology 143, pp. 687-94 (1998)

pdf PubMed

Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle

K Nabeshima; T Nakagawa; A F Straight; A Murray; Y Chikashige; Y M Yamashita; Y Hiraoka; M Yanagida

Molecular Biology of the Cell 9, pp. 3211-25 (1998)

pdf PubMed

Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores

R H Chen; A Shevchenko; M Mann; A W Murray

The Journal of Cell Biology 143, pp. 283-95 (1998)

pdf PubMed

Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase

G J Gorbsky; R H Chen; A W Murray

The Journal of Cell Biology 141, pp. 1193-205 (1998)

pdf PubMed

Localization of Mad2 to kinetochores depends on microtubule attachment, not tension

J C Waters; R H Chen; A W Murray; E D Salmon

The Journal of Cell Biology 141, pp. 1181-91 (1998)

pdf PubMed

Budding yeast Cdc20: a target of the spindle checkpoint

L H Hwang; L F Lau; D L Smith; C A Mistrot; K G Hardwick; E S Hwang; A Amon; A W Murray

Science 279, pp. 1041-4 (1998)

pdf PubMed

Interphase chromosomes undergo constrained diffusional motion in living cells

W F Marshall; A Straight; J F Marko; J Swedlow; A Dernburg; A Belmont; A W Murray; D A Agard; J W Sedat

Current Biology 7, pp. 930-9 (1997)

PubMed

A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis

L H Hwang; A W Murray

Molecular Biology of the Cell 8, pp. 1877-87 (1997)

pdf PubMed

Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms

G S Gordon; D Sitnikov; C D Webb; A Teleman; A Straight; R Losick; A W Murray; A Wright

Cell 90, pp. 1113-21 (1997)

PubMed

Mitosis in living budding yeast: anaphase A but no metaphase plate

A F Straight; W F Marshall; J W Sedat; A W Murray

Science 277, pp. 574-8 (1997)

pdf PubMed

Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA

J Nunnari; W F Marshall; A Straight; A Murray; J W Sedat; P Walter

Molecular Biology of the Cell 8, pp. 1233-42 (1997)

pdf PubMed

In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition

C C Robinett; A Straight; G Li; C Willhelm; G Sudlow; A Murray; A S Belmont

The Journal of Cell Biology 135, pp. 1685-700 (1996)

pdf PubMed

GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion

A F Straight; A S Belmont; C C Robinett; A W Murray

Current Biology 6, pp. 1599-608 (1996)

PubMed

Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast

J Minshull; A Straight; A D Rudner; A F Dernburg; A Belmont; A W Murray

Current Biology 6, pp. 1609-20 (1996)

PubMed

Real time observation of anaphase in vitro

A W Murray; A B Desai; E D Salmon

Proceedings of the National Academy of Sciences of the United States of America 93, pp. 12327-32 (1996)

pdf PubMed

Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores

R H Chen; J C Waters; E D Salmon; A W Murray

Science 274, pp. 242-6 (1996)

pdf PubMed

Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption

K G Hardwick; E Weiss; F C Luca; M Winey; A W Murray

Science 273, pp. 953-6 (1996)

pdf PubMed

Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast

W A Wells; A W Murray

The Journal of Cell Biology 133, pp. 75-84 (1996)

pdf PubMed

Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast

K G Hardwick; A W Murray

The Journal of Cell Biology 131, pp. 709-20 (1995)

pdf PubMed

NAP1 acts with Clb1 to perform mitotic functions and to suppress polar bud growth in budding yeast

D R Kellogg; A W Murray

The Journal of Cell Biology 130, pp. 675-85 (1995)

pdf PubMed

Members of the NAP/SET family of proteins interact specifically with B-type cyclins

D R Kellogg; A Kikuchi; T Fujii-Nakata; C W Turck; A W Murray

The Journal of Cell Biology 130, pp. 661-73 (1995)

pdf PubMed

CORRECTION: The mitotic feedback control gene MAD2 encodes the alpha-subunit of a prenyltransferase

R Li; C Havel; J A Watson; A W Murray

Nature 371, pp. 438 (1994)

pdf PubMed

A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts

J Minshull; H Sun; N K Tonks; A W Murray

Cell 79, pp. 475-86 (1994)

PubMed

High resolution multimode digital imaging system for mitosis studies in vivo and in vitro

E D Salmon; T Inoue; A Desai; A W Murray

The Biological Bulletin 187, pp. 231-2 (1994)

pdf PubMed

ERRATA: Feedback control of mitosis in budding yeast

R Li; A W Murray

Cell 79, pp. i (1994)

PubMed

The mitotic feedback control gene MAD2 encodes the alpha-subunit of a prenyltransferase

R Li; C Havel; J A Watson; A W Murray

Nature 366, pp. 82-4 (1993)

pdf PubMed

Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor

S L Holloway; M Glotzer; R W King; A W Murray

Cell 73, pp. 1393-402 (1993)

PubMed

Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase

C E Shamu; A W Murray

The Journal of Cell Biology 117, pp. 921-34 (1992)

pdf PubMed

S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28

P K Sorger; A W Murray

Nature 355, pp. 365-8 (1992)

pdf PubMed

Feedback control of mitosis in budding yeast

R Li; A W Murray

Cell 66, pp. 519-31 (1991)

PubMed

Xenopus oocyte maturation does not require new cyclin synthesis

J Minshull; A Murray; A Colman; T Hunt

The Journal of Cell Biology 114, pp. 767-72 (1991)

pdf PubMed

Cyclin is degraded by the ubiquitin pathway

M Glotzer; A W Murray; M W Kirschner

Nature 349, pp. 132-8 (1991)

pdf PubMed

The role of cyclin synthesis and degradation in the control of maturation promoting factor activity

A W Murray; M J Solomon; M W Kirschner

Nature 339, pp. 280-6 (1989)

pdf PubMed

Cyclin synthesis drives the early embryonic cell cycle

A W Murray; M W Kirschner

Nature 339, pp. 275-80 (1989)

pdf PubMed

Characterization of two telomeric DNA processing reactions in Saccharomyces cerevisiae

A W Murray; T E Claus; J W Szostak

Molecular and Cellular Biology 8, pp. 4642-50 (1988)

pdf PubMed

Roles of the 2 micron gene products in stable maintenance of the 2 micron plasmid of Saccharomyces cerevisiae

A E Reynolds; A W Murray; J W Szostak

Molecular and Cellular Biology 7, pp. 3566-73 (1987)

pdf PubMed

An alternative pathway for meiotic chromosome segregation in yeast

D S Dawson; A W Murray; J W Szostak

Science 234, pp. 713-7 (1986)

pdf PubMed

Construction and behavior of circularly permuted and telocentric chromosomes in Saccharomyces cerevisiae

A W Murray; J W Szostak

Molecular and Cellular Biology 6, pp. 3166-72 (1986)

pdf PubMed

Chromosome length controls mitotic chromosome segregation in yeast

A W Murray; N P Schultes; J W Szostak

Cell 45, pp. 529-36 (1986)

PubMed

Pedigree analysis of plasmid segregation in yeast

A W Murray; J W Szostak

Cell 34, pp. 961-70 (1983)

PubMed

Construction of artificial chromosomes in yeast

A W Murray; J W Szostak

Nature 305, pp. 189-93 (1983)

pdf PubMed

Studies on intercellular LETS glycoprotein matrices

L B Chen; A Murray; R A Segal; A Bushnell; M L Walsh

Cell 14, pp. 377-91 (1978)

PubMed

Methods paper

An in vitro assay for cdc20-dependent mitotic anaphase-promoting complex activity from budding yeast

Scott C Schuyler; Andrew W Murray

Methods in Molecular Biology (Clifton, NJ) 545, pp. 271-85 (2009)

pdf PubMed

The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro

A Desai; A Murray; T J Mitchison; C E Walczak

Methods in Cell Biology 61, pp. 385-412 (1999)

PubMed

Characterization of spindle assembly checkpoint in Xenopus egg extracts

R H Chen; A Murray

Methods in Enzymology 283, pp. 572-84 (1997)

PubMed

The spindle assembly checkpoint in budding yeast

A F Straight; A W Murray

Methods in Enzymology 283, pp. 425-40 (1997)

PubMed

Cell cycle extracts

A W Murray

Methods in Cell Biology 36, pp. 581-605 (1991)

PubMed

Cloning regulated yeast genes from a pool of lacZ fusions

S W Ruby; J W Szostak; A W Murray

Methods in Enzymology 101, pp. 253-69 (1983)

PubMed

Review

A brief history of error

Andrew W Murray

Nature Cell Biology 13, pp. 1178-82 (2011)

pdf PubMed

The ups and downs of modeling the cell cycle

Nicholas T Ingolia; Andrew W Murray

Current Biology 14, pp. R771-7 (2004)

pdf PubMed

Recycling the cell cycle: cyclins revisited

Andrew W Murray

Cell 116, pp. 221-34 (2004)

pdf PubMed

Whither genomics?

A W Murray

Genome Biology 1, pp. COMMENT003 (2000)

pdf PubMed

From molecular to modular cell biology

L H Hartwell; J J Hopfield; S Leibler; A W Murray

Nature 402, pp. C47-52 (1999)

pdf PubMed

Sister chromatid cohesion in mitosis

Sue Biggins; Andrew W Murray

Current Opinion in Genetics & Development 9, pp. 230-6 (1999)

PubMed

Integrating genetic approaches into the discovery of anticancer drugs

L H Hartwell; P Szankasi; C J Roberts; A W Murray; S H Friend

Science 278, pp. 1064-8 (1997)

pdf PubMed

The spindle assembly checkpoint

A D Rudner; A W Murray

Current Opinion in Cell Biology 8, pp. 773-80 (1996)

PubMed

Cyclin ubiquitination: the destructive end of mitosis

A Murray

Cell 81, pp. 149-52 (1995)

PubMed

The genetics of cell cycle checkpoints

A W Murray

Current Opinion in Genetics & Development 5, pp. 5-11 (1995)

PubMed

Cyclin-dependent kinases: regulators of the cell cycle and more

A W Murray

Chemistry & Biology 1, pp. 191-5 (1994)

PubMed

Cell cycle checkpoints

A Murray

Current Opinion in Cell Biology 6, pp. 872-6 (1994)

PubMed

Creative blocks: cell-cycle checkpoints and feedback controls

A W Murray

Nature 359, pp. 599-604 (1992)

pdf PubMed

Coordinating cell cycle events

A W Murray

Cold Spring Harbor Symposia on Quantitative Biology 56, pp. 399-408 (1991)

pdf PubMed

Dominoes and clocks: the union of two views of the cell cycle

A W Murray; M W Kirschner

Science 246, pp. 614-21 (1989)

pdf PubMed

Cyclin synthesis and degradation and the embryonic cell cycle

A W Murray

Journal of Cell Science Supplement 12, pp. 65-76 (1989)

pdf PubMed

Chromosome segregation in mitosis and meiosis

A W Murray; J W Szostak

Annual Review of Cell Biology 1, pp. 289-315 (1985)

pdf PubMed

Commentary

Paul Nurse and Pierre Thuriaux on wee Mutants and Cell Cycle

Andrew W Murray

Genetics 204, pp. 1325-6 (2016)

pdf PubMed

Salvador Luria and Max Delbrück on Random Mutation and Fluctuation Tests

Andrew W Murray

Genetics 202, pp. 367-8 (2016)

pdf PubMed

Complications dawn for kinetochore regulation by Aurora

Natalie J Nannas; Andrew W Murray

Proceedings of the National Academy of Sciences 109, pp. 15972-3 (2012)

pdf PubMed

Don't make me mad, bub!

Andrew W Murray

Developmental Cell 22, pp. 1123-5 (2012)

pdf PubMed

A delay like no other

Soni Lacefield; Andrew Murray

Nature Genetics 37, pp. 662-3 (2005)

pdf PubMed

Q & A

Andrew Murray

Current Biology 14, pp. R50 (2004)

PubMed

Signal transduction. History matters

Nicholas T Ingolia; Andrew W Murray

Science 297, pp. 948-9 (2002)

pdf PubMed

Cell cycle. Centrioles at the checkpoint

A W Murray

Science 291, pp. 1499-502 (2001)

pdf PubMed

Can sequencing shed light on cell cycling?

A W Murray; D Marks

Nature 409, pp. 844-6 (2001)

pdf PubMed

Journey to the centre of the cell

A W Murray

Nature Cell Biology 2, pp. E130-1 (2000)

pdf PubMed

How to compact DNA

A W Murray

Science 282, pp. 425, 427 (1998)

pdf PubMed

MAP kinases in meiosis

A W Murray

Cell 92, pp. 157-9 (1998)

PubMed

My Word (Collected)

Andrew W Murray

Current Biology 5, pp. 333-334 (1995)

PubMed

Cell cycle. Tense spindles can relax

A W Murray

Nature 373, pp. 560-1 (1995)

pdf PubMed

Cell cycle. Rum tale of replication

A W Murray

Nature 367, pp. 219-20 (1994)

pdf PubMed

Mitosis. Kinetochores pass the IQ test

A W Murray; T J Mitchison

Current Biology 4, pp. 38-41 (1994)

PubMed

Cell cycle. Sunburnt fission yeast

A W Murray

Nature 363, pp. 302 (1993)

pdf PubMed

Cell-cycle control: turning on mitosis

A W Murray

Current Biology 3, pp. 291-3 (1993)

PubMed

Cell Biology. Never-in-mitosis in mitosis

A W Murray

Nature 353, pp. 701-2 (1991)

pdf PubMed

Cell biology. Remembrance of things past

A W Murray

Nature 349, pp. 367-8 (1991)

pdf PubMed

Telomeres. All's well that ends well

A Murray

Nature 346, pp. 797-8 (1990)

pdf PubMed

Cell biology: the cell cycle as a cdc2 cycle

A W Murray

Nature 342, pp. 14-5 (1989)

pdf PubMed

A mitotic inducer matures

A W Murray

Nature 335, pp. 207-8 (1988)

pdf PubMed

Cell cycle control. A cycle is a cycle is a cycle

A W Murray

Nature 327, pp. 14-5 (1987)

pdf PubMed

Cell biology. Cyclins in meiosis and mitosis

A W Murray

Nature 326, pp. 542-3 (1987)

pdf PubMed

The Murray Lab, Harvard University, Dept. of Molecular and Cellular Biology, 52 Oxford Street, Room 469, Cambridge, MA 02138